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If the time scale for cross-sectional mixing is comparable with or larger than the flow 
period, then, after each flow reversal, there can be a substantial time span in which the 
contaminant cloud is contracting. Thus, the apparent longitudinal-diffusion coefficient 
is negative. This means that the contaminant dispersion cannot be modelled by a 
diffusion equation, because negativc diffusivities imply the spontaneous development 
of infinite concentrations. Here it is shown how this periodic contracting and expand- 
ing can be modelled by a delay-diffusion equation (Smith 1981) 

fm 

a$ + ;ii a,a = i? a2c + J aT D a;qx - x, t - 7 )  d7, 
0 

where 2(t) is the bulk velocity, X ( t , 7 )  a coordinate displacement, and D ( ~ , T )  the 
diffusion coefficient at time T after discharge. The recent memory a,D is always 
positive and diffusive in character, so singularities cannot arise. However, when 7 is 
large this memory function can be negative because of reversed flow at earlier times. 
Particular attention is given to estuarial flows and results are derived for the depen- 
dence of D upon the water depth and upon the width of the estuary. 

1. Introduction 
In shear flows the apparent longitudinal diffusivity can exceed molecular or turbu- 

lent diffusivities by many orders of magnitude. For example, in the Missouri River, 
Yotsukura, Fischer & Sayre ( 1970) measured longitudinal diffusion coefficients in 
excess of lo3 m2 s-l. If suoh huge diffusivities were achieved immediately, t.hen a 
droplet of dye would appear to explode out to a length of 10 metres in less than a 
tenth of a second. What does happen is that, as the cloud of dye grows across the flow, 
it experiences more of the velocity shear and is stretched out at a continually increasing 
rate. The extremely high apparent diffusivities are only achieved after the cloud has 
been mixed right across the flow. 

For oscillatory flows the possibility arises that the flow may have changed direction 
before the dispersion process has had time to become fully effective. The obvious 
implication is that the apparent diffusivities are greatly reduced as compared with the 
corresponding steady flows. For estuaries this sudden drop-off in the value of the 
longitudinal-diffusion coefficient takes place when the width reaches about 200 m 
(Holley, Harleman & Fischer 1970). Many major tidal waterways are of just this sort 
of width. For blood flow, the critical internal diameter for the blood vessels is about 
2 mm (Chatwin 1975). Dispersion is fully effective for the smaller capillaries and 
arterioles, but is seriously inhibited in the larger arteries. 
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Most previous work (e.g. Aris 1960) has concentrated upon the long-term properties 
of the dispersion. However, Chatwin (1975) has shown that there can be strong oscil- 
latory effects which dominate the character of the contaminant cloud over time 
intervals of many periods. Indeed, he points out that  the amplitude of the modulation 
may be such that the contaminant cloud appears to be periodically expanding and 
contracting: stretched out in the faster parts of the flow in one half-cycle and then 
returned to only slightly larger than the original shape on the second half-cycle. For 
estuary flows such contraction after flow reversal is particularlj- marked (see figure 4 
of Holley et al. 1970). 

Unfortunately, the most commonly used mathematical model for Contaminant 
dispersion is a diffusion equation 

a,c + iq t )  a, c = [ ~ ( t )  + ~ ( t ,  T)] a:c ( 1 . 1 )  

(Gill & Sankarasubramanian 1971). Here C(z, t)  is the cross-sectionally averaged 
concentration, U the bulk velocity, K the longitudinal diffusivity, D the shear-dis- 
persion coefficient, an2 7 the time that has elapsed since discharge. The growth rate 
of the variance of the contaminant cloud is 2(K + D ) .  Thus, if the cloud is contracting, 
then the dispersion coeficient is negative. This has the disastrous implication that 
singularities (i.e. infinite concentrations) would arise spontaneously (Posmentier 1977). 

Many authors (Chatwin 1970; Thacker 1976; Smith 1979) have pointed out that 
the diffusion equation ( 1 . 1 )  is inappropriate except a t  very long times after discharge. 
The principal reason is that  the present rate of dispersion depends on how the con- 
taminant has been mixed across the flow further upstream at earlier times (i.e. the 
concentration variations across the flows are not determined by the local longitudinal 
concentration gradient). For steady flows, the author (Smith 1981) has recently 
proposed an alternative model equation in which the dispersion term D(t,  T) af c is 
replaced by an advected memory term. Here the mathematical analysis is extended 
to  incorporate unsteady flows. The resulting delay-diffusion equation takes the form 

P m  

a, c + u a, c = K a,: F + J a, D a: c (x - x, t - 7) d7, 
0 

where X ( t ,  T) is a co-ordinate displacement. Near 7 = 0 t,he memory function a, D is 
always positive and diffusive in character. However, when 7 is large this memory 
function can be negative because of reversed flow at earlier times. In  this way the 
absence of spontaneous singularities is made compatible with the contraction of the 
contaminant cloud after flow reversal. 

2. Representation of the concentration variations 
In principle we are seeking a solution c(x, y, z, t )  of the unsteady advection-diffusion 

equation 

with (2.1) 
K n . O c = O  onaA, e = O  a t  t = 0 .  

Here u(y, z, t )  is the longitudinal velocity, K ( Y ,  z ,  t )  the diffusivity, q(x, t )  a source term, 
V the transverse gradient operator (0, ay, az) ,  aA the flow boundary, and n the outward 
normal. 

1 a, c + u a, c - v . (KPc) - K a;c = q ,  
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The complexity of this equation forces us to seek some simplifications. In  the one- 
dimensional-diffusion approximation (Taylor 1953) it is assumed that 

c(2 ,  y, 2, t )  = E(z, t )  + f ( y ,  2, t )  a,E(s, t )  + ... . (2.2) 

While this is adequate at large times after discharge, it is not physically sound a t  
earlier stages before the dispersion process has reached its asymptotic state. Instead, 
we relate the concentration variations across the flow to the bulk properties upstream 
at earlier times (Smith 1981): 

C - c  = l j ( y ,  2 ,  t ,  7 )  a : a ( ~ - x ( t , ~ ) ,  t -7) d7. (2.3) 
j = 1  OD /OD 0 

If we substitute this representation (2.3) into the full equations (2.1) and take the 
cross-sectional-average value, then we obtain the longitudinal-dispersion equation 

a,? + 'ii(t) a, c - iq t )  a;e - 5 /OD M,(t, 7 )  aj," E(,r - X ( t ,  7 ) ,  t - 7 )  d7 = Q ,  (2.4) 
j = o  0 

with 

M, = a,o = (u-u)~, ,  M, = ( z - U ) Z ~ + ( K - Z ) Z , - , .  (2.5) 

Truncation at the second-derivative term gives the delay-diffusion equation ( 1.2). 

functions E,(y, z, t ,  7) must satisfy the transverse dispersion equations 

mi t h 

Proceeding as in Smith (1981), we find from the &? terms in (2.1) that the auxiliary 

(2.6) 1 
I 

a, 1, + a$, - v . (KVlJ = 0, 

Kn.Vl ,=O onaA, l l = i i - u  at 7 = 0 ,  

(2.7) 
a , ~ , + a , z , - ~ .  (KVZJ = [ a , ~ + a , x ] ~ , + u l , - u ~ , ,  

with 
K n . V l , = O  onaA, l , = ~ - i ?  at 7 = 0 ,  

- - 
atl, + a, I ,  - V .  ( K V I ~ )  = [a,x + a, X I  l j - ,  + ul,-, - U Z , - ~  + ~ l , - , -  ~ l , - , ,  

with 
K n . V l f =  0 onaA, l j = O  at 7 = 0 .  J 

Thus, in the familiar manner of series expansions, we have eliminated any dependence 
upon the x-co-ordinate at the expense of generating an infinite sequence of lower- 
dimensional problems for the coefficients lj. The advantages are that the individual 
equations (2.6)-(2.8) are easier to solve than the original problem (2.1), and that useful 
results can be obtained even with a one-term truncation (1.2) (see the remarks at the 
end of 5 4) .  

3. Memory function 
In general, the time dependence of K(Y, z, t )  precludes us from obtaining explicit 

analytic solutions to (2.6)-(2.8). However, with an eye towards the problem of dis- 
persion in shallow estuaries, we make the assumption that, K remains spatially self- 
similar. It then becomes possible to adapt tl!e author's steady-flow results (Smith 
1981) with only minor modifications. Of course, in laminar flows K is constant, and our 
assumption is trivially satisfied. 

13-2 
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Using angle brackets (. . .) to denote time-averaging, we introduce the eigenfunctions 
($m(Y,z)): 

(3.1) I V - ( ( K )  V$m) + Am $m = 0, 
with 

(K)n.V?,bm = 0 on 8A. 

For algebraic convenience me shall assume that the modes are normalized: 
- 

?,bo = 1) $% = 1.  (3.2) 

To represent the starting conditions for Z1(y,z,t,7) at 7 = 0, we introduce the 
coefficients 

03 - 
u,(t) = u@m, i.e. ~ ( y ,  2, t )  = z(t) + 2 u m ( t )  $ m ( y ,  2). (3.3) 

nc = 1 

The solution for I ,  can then be written 
m 

with 

I ( t , 7 )  = ( K ( t 4 ) / ( K ) ) d T f .  L 
Also, in terms of u, the principal memory function 8, D is given by the neat formula 

03 

8,D = MI@, 7 )  = um(t) u,(t - 7 )  exp ( - AmI(t, 7 ) ) .  ( 3-61 
m = l  

For small 7 all the coefficients in the series (3.6) are positive bnd so a,D is positive. 
However, if the flow is oscillatory, then at  large time separation the memory c w  be 
neghve. In particular, if t,he flow is sinusoidal, 

un, = a, U sin (wt + 0,) (3.7) 

with rc constant, then we have 

8, D = U2 C a: sin (wt + On,) sin (wt - w7 + 8,) exp ( - A,T) 
n& = 1 

co 

= kU2 cos w7 a:,[ 1 - cos 2(wt + Om)] exp ( - A,T) 
m = l  

OD 

- &U2 sin wr a& sin 2(wt + 0,) exp ( - h , ~ ) .  (3.8) 
111 = 1 

Hence 8, D is oscillatory with respect to 7,  with exponentially decaying amplitude. 
Integrating with respect to 7 ,  we obtain the formula 

1) w - 2 exp ( - Am7) sin (wt + 0,) sin (ot - 07 + 0,) - - cos (wt - w7 + 0,) . (3.9) 

The constant term agrees with the work of Holley et al. (1970)) while the non-decaying 
oscillatory term agrees with hhe work of Chatwin (1975). A new feature of (3.9) is the 
explicit dependelice upon the time lapse 7 since discharge. 

[ Am 
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FIGURE l (a ,b) .  For legend 808 page 384. 
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-1  J W t  + e .-> 
FIGURE 1 .  Single-mode contribution to the longitudinal-dispersion coefficient for discharges at 

different times in a sinusoidal flow. (a) A/w = 0-5, (b )  h/w = 1.0, (c) h/w = 2. 
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FIGURE 2 (a). For legend sm facing page. 
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FIGURE 2. Single-mode contribution to the variance for discharges at different times 
in a sinusoidal flow. (a) A / o  = 0.5, ( b )  A/w = 1 ,  (c) A/OJ = 2. 

The greatest contribution to the shear dispersion comes from the mode with A, 
in the vicinity of w. Thus, a reasonable impression of the time dependence of D(t,  7 )  

can be obtained from the terms in the curly brackets {. ..}. Figures 1 (a, b, c) show 
results for Am/w = g, 1 , 2  and for several different discharge times. In  all cases there 
is a span of time following flow reversal when the contribution to D is negative. As 
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was remarked in 5 1 ,  negative values of D preclude the use of a diffusion description 
of the concentration distribution. 

In practice the measured quantity is the stjandard deviation for a sudden discharge. 
Thus, we integrate yet again: 

x [A, sin (wt + 0,) + w cos ( o t  + 09J] . (3.10) 

Figures 2(a, b ,  c )  show the single-mode contributions t o  the standard deviation. 
Qualitatively, these resemble the numerical results obtained by Holley et al. (1970, 
figure 4), and by Allen ( 1981). 

If, as is the case in twbulent flows (Maxey 1978, chap. 3), the diffusivity varies 
with time, then there are slight changes in the time development of D(t ,7)  and 
a2(t, 7 ) .  An extreme case is that of shallow estuaries where the turbulent intensity is 
proportional to the tidal current 

1 

K / ( K )  = $nIsin(wt+O)I. (3.11) 

The dashed curves in figures 1 and 2 show the results for this case. The general features, 
of strong oscillatioiis and of negative diffusion after flow reversal, are very much in 
accord wit,h the constant-K results. 

4. Co-ordinate displacement 
The non-homogeneous terms in (2 .7)  lead us to int,roduce the further notation 

The II., coefficient l,, in the eigenfunction expansion for 1, satisfies the equation 

I, ,  = K , , ( t )  at 7 = 0. 

The solution is given by 
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Substituting this result for l,, into (2.5), we find that t,he second memory function 
N,(t, 7 )  is given by 

m 

1)) = 1 
34 = - z exp ( - A , W ,  7 ) )  [K,(t - 7 )  u,(t) + K,(t) u,(t - 7 ) ]  

m 

- X exp(-AmI(t,7))um(t) X un(t-7) Umn(t-7’) 
m = l  R =k 7)) ji 

x exp [ - (&-A,) I ( t  -7 ‘ ,7  -7 ’ ) ]  d7’. (4.4) 

The K, terms show the effect of the non-uniform longitudinal diffusivity, while the 
remaining terms give a second approximation to the shear dispersion. In the longitu- 
dinal-dispersion equation (2.4) the memory effects are important only if the diffusivity 
term K ( t )  is small. Thus, for simplicity we shall neglect the diffusive contribution to X,. 

Ideally what we would wish to achieve with our choice of X ( t , 7 )  is to make t,he 
shear contribution to H2(t, 7) identically zero. This would ensure that tfhe lowest-order 
truncation (1.2) of the longitudinal-dispersion equation (2.4) has the accuracy of the 
next approximation. In general this cannot be achieved because the zeros of illl& 7 )  

and Al.(t ,  7 )  do not coincide. An important special case in which this is possible is for 
shallow estuaries, where all the coefficients U, u,, u,, are phase-locked with each other. 
The optimal choice for X ( t ,  7) is then 

A simple approximation for X ( t , 7 )  is to assume that the displacement velocity 
a7X takes the form 

i.e. (4.6) I a7x = z(t-7)+w(t-7), 

X ( t ,  7 )  = [G(t - 7’ )  + ?P(t -+)I d7‘. j: 
To define the excess velocity w we choose to eliminate any long-term influence of the 
second memory function: 

Remarkably, we can sum the double series (4.4) explicitly to obtain an integral equa- 
tion for w: 

Here the auxiliary functions g, f satisfy the forwards- and backwards-going diffusion 
equat,ions 

with (4.9) 

a,g-v.(KVg) = u-Ti) 

Q = O ,  m . V g = O  onaA, 
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with 
- a , f - v . ( K V f )  = u-Ti, 

J = o ,  Kn.Vf=o onaA, 
(4.10) 

where any free transients are assumed t,o have decayed away. 
I n  passing, we record that, at large times after discharge, in axes moving with the 

bulk velocity U., the second and third moments E(2) ,  $)of the concentration distribution 
are given by 

(4.11) 

These are the generalizations to  arbitrary unsteady flows of results given by Chatwin 
(1970, 1975) for steady and for sinusoidal flows. I n  particular, the above choice (4.8) 
for the co-ordinate displacement ensures that a t  large times after discharge the growth 
rstc of the skewness is predicted correctly by the delay-diffusion equation (1.2).  

5.  Two-layer approximation 
An extremely desirable property for a model equation to possess is that i t  should be 

exact for some physically meaningful limiting case. This would then guarantee that 
the solutions are free from gross physical contradictions, such as the spontaneous 
development of singularities. I n  this section we follow Thacker ( 1  976) and show that 
for a two-layer flow the delay-diffusion equation ( 1.2) is exact. 

Let c+,c- be the concentrations in two well-mixed layers with relative areas 
Q ( 1 - 0 ,  i ( 1  + E )  and with layer velocities u+(t), uJt) (see figure 3). If h(t)  is the ex- 
change rate between the layers, and q+( t ) , q - ( t )  are the source strengths, then the 
evolution equations for the contaminant concentrations c+, c- take the form 

(5.1) 

For steady flows the characteristic velocities u+, u- are constant and the hyperbolic 
equations (5.1) can be solved analytically (Thacker 1976). 

} 
a,c++u+a,c+ = + c ) h ( c - - c + ) + q + ,  
a,c- + u- a,c- = Q( 1 - 5) h(c+ - c-) + q-. 

If we introduce the notation 

E = Q(l - t ) c++  :(I +()c-, AC = ~ ( c + - c - ) ,  (5.2) 

to denote the cross-sectional-average values and the departiires from the average, 
then (5.1) can be re-written as 

(5.3) 

When the source distribution is uniform across the flow, the solution for Ac is 
I a,c+;ia,c = q - ( i  - p ) ~ U a , ~ c ,  

a,Ac+ (U+ 2gAu) a, AC + h AC = Aq - Aua,E. 

given by 

(5.4) 

AC = - Au(t - 7) exp ( - h(t - t ’ )  d t ’ )  ~ , C ( X  - X ,  t - 7 )  dT 
with !OW /Or 

[ G ( t  - t ’ )  + 2 5 A ~ ( f  - t ’ ) ]  dt’. 
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FrauR~ 4(a,b). For legend 8% page 390. 
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FIQURE 4. Skewness &B a function of time for a two-layer sinusoidal flow with 6 = - 7415 and 
uz(t,) = (D) /w.  For smaller initial variance the skewness would be greater, particularly near 
7 = 0. (a) A/u = 0.5, (a) A / o  = 1, (c) A/u = 2. 

If  this is substituted into the equation for E then we obtain the delay-diffusion equation 
r m  \ 

Hence the model equation (1 .2 )  is indeed exact for the two-layer system (5 .1) .  

particular, if the flow is sinusoidal, 
The skewness of the concentration distribution depends upon the parameter 6. In  

(1-C2)tAu = aUsin(wt+0) (5.6) 

with A constant, then the standard deviation is given by the one-term version of 
(3.10), and the third moment @is given by 

+ w2h[sin 3(wt + 0 )  + sin 3(wt, + 0)]  

- 3 4 2  + 2w2) [cos (wt + 0)  - cos (@to + ell 
+ & W ( P  - 2w2) [cos 3(wt + 0)  - cos 3(ot0 + S)] 
+ 2A2w exp ( - h(t - to))  [sin 2(wt0 + 0) sin (ot + 0) - sin (wt, + 0) sin 2(wt + 0)]  

+ 4w3 exp ( - h(t - to))  [COS (wt, + 0)  cos 2(wt + 0 )  - cos 2(wt, + 0 )  cos (wt + 0) ]  

+ 2hw2 exp ( - h(t  - to))  [sin 2(wt0 + 0)  cos (wt + 0) + sin 2(wt + 0)  cos (wt, + 0 )  

- 2 sin (ot + 0) cos 2(wt, + 0) - 2 sin (tot, + 8 )  cos 2(wt + 0)3 .  (5.7) 
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Unlike the steady flow case (Chatwin 1970), the third moment 9remains bounded. 
Thus, the skewness 

only develops strongly in the first flow oscillation and subsequently fades away at the 
overall rate t-8 (see figures 4u-c). Again, there is qualitative agreement with the 
numerical results of Allen (1981). Holley et al. (1970) did not calculate the skewness. 
However, they did remark upon the disparity between the skewed distributions at the 
half period and the symmetrical distribution at the full period. In their work the 
discharge was made at the turn of t,he tide. Thus, the two-layer equation (5.7) would 
indeed predict zero skewness at every subsequent full period (see figures 4a, b, c). 

y = @ ) / @ a 3  (5.8) 

6.  Shallow estuaries 
In  water depth of 10 m and with friction velocity 0.02 m s--l, the e-folding time 

for vertical mixing is about 600 s (Smith 1979, equation (2.7)). Thus, on a tidal time 
scale we can ignore vertical concentration varbtions, and the local longitudinal velo- 
city will be proportion to the bulk velocity ii. Integrating the eigenmode equation (3.1) 
from z = - h to z = 0, we obtain the transverse eigenvalue problem 

with 

Here h(y) is the water depth, y+, y- are the two sides of the estuary, and ( I I K I I )  denotes 
the vertically and tidally averaged transverse diffusivity . Similarly, we represent the 
vertically averaged velocity profile as 

llull = ~ ( t )  [ 1 + m - 1  2 arn+rn(Y)] * (6.2) 

The numerical values of the coefficients u,, A, depend upon the velocity and depth 
profiles across the estuary. For example, if we assume that 

/lull = GV-lE/P, ( I IKI I )  = K ,  UEhY/F, 

then the coefficients are determined by the equations 

a,,, = - 1 lY+ J Y+-Y- Y- 

Here U is the peak value of G(t) ,  and the empirical constant K ,  is about 0.01 (Talbot t 
Talbot 1974). The most realistic choice for the exponents is to take 

B = Y = 5  
(Smith 1976). 
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FIUIJRE 5. Definition sketch for a parabolic estuary. 

A model which is analytically convenient, yet is not too dissimilar to the optimal 
choice of exponents, is _ -  

llull = ;iihh/h2, ( 1 1 ~ 1 1 )  = K2Uh (6.6) 

h(Y) = HE1 - (?ma] ( - < Y < B )  (6.7) 

(Fischer 1972). In  particular, for a parabolic depth profile 

(see figure 5) the eigenmodes are ultraspherical polynomials: 

A, = m(m+ 3) K ,  U H / B z  J 
(Abramowitz & Stegun 1965, chap. 22). The crucial feature which makes this example 
so easy is that the velocity profile involves just the m = 2 mode: 

with 
i.e. 

In  this circumstance the optimum and asymptotic choices ( 4 4 ,  (4.8) for the centroid 
displacement are identical, 

(6.10) 

Furthermore, the two-layer approximation (5.3) is exactly equivalent to the delay- 
diffusion equation (1.2) provided that we choose 

(6.11) 
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IB 
100 m 

Half breadth -> 
FIGURE 6. Long-term averaged dispersion coefficient for a 10 m 

deep estuary wit,h peak tidal velocity 1 m s-l. 

200 m 

If we model the turbulence as being steady and the tidal current as being sinusoidal, 

ii = U sin o t ,  (6.12) 

then at  large times after discharge we find that the tidally averaged dispersion co- 
efficient is given by the simple formula 

5K2 U8HB2 
(*) = 14[dB4 + 100K; U2H2] ' (6.13) 

Figure 6 shows the predicted dispersion coefficient as a function of half-width B for 
an estuary with maximum depth 10 m, peak velocity 1 m s-l, and semi-diurnal fre- 
quency w = 1.5 x lo-* s-l. As before, the dashed curve in figure 6 gives the results 
for the case in which the diffusivity is proportional to the tidal current. There is good 
overall agreement with the model calculations of Holley et al. (1970, equation (23)). 
To construct the complete time-dependent dispersion coefficient, it is necessary to  
multiply the above result (6.13) by the time-dependent factor shown in figures 1 (a-c). 

7. Calculation of the velocity profile 
A major obstacle to  the study of dispersion in oscillatory flows is the need to know 

the unsteady non-uniform velocity profile. Assuming that the pressure gradient 
- G ( t )  is uniform along and across the flow, then we can mite  the longitudinal- 
momentum equation 

I ~,u-V.(VVU) = G(t ) ,  

with u = 0 on rigid parts of aA, 
vn. Vu = 0 on free parts of aA. 

The natural eigenmodes W(y,  z )  satisfy the field equations 

v . (( v) v @ ( I ) )  + pu') = 0, 
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with the corresponding rigid and free boundary conditions. A suitable normalization 
is to take - 

@(1)2 = 1. (7.3) 

The resulting solution for the velocity field is 

with I m 

E = O  
u(y,  2, t )  = r, uqt) o q y ,  z), 

where by analogy with (3.5) we have defined 

(7.4) 

If it is the bulk velocity 5(t) that is externally imposed, then the pressure gradient is 
determined by the integral equation 

For the eventual dispersion calculation it is necessary to calculate t,he velocity co- 
efficients urn(t) with respect to the diffusion eigenmodes ($,Jl(y, z)} .  This involves yet 
anot.her infinite series: 

The simplicity of the previous example lay in the fact that for shallow estuaries the 
velocity eigenvalues , d l )  are so large that the response time for the pressure gradient 
is extremely rapid, leading to simple proportionality between urn and ;il. Another 
simple example is studied in 0 8. 

8. Deep estuaries 
For very large estuaries there is little cross-sectional mixing achieved on the time 

scale of the order of one tidal oscillation. Thus, the transverse oscillatory shear ceases 
to be the dominant mechanism for longitudinal dispersion. One mechanism which can 
continue to be important is the oscillatory vertical velocity shear (Bowden 1965; 
Allen 1981). In this section we give a simple model calculation for the dispersion co- 
efficient associated with this mechanism. 

For simplicity we ignore any time dependence of the turbulent structure and we 
assume that the vertical eddy diffusivities of mass and momentum are equal : 

with 

Here k is a dimensionless constant (about 0-4), h is the water depth, u* a turbulent 
velocity scale, and V* a dimensionless roughness height. 

Since y* is usually extremely small (e.g. 2 cm roughness elements in water of depth 
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20 m), the eigenmodes for velocity and concentration are virtually identical except 
in the immediate vicinity of the estuary bed. If we relax the normalizat,ion (7.3), then 
correct to order 7* the two classes of eigenmodes are given by 

$m = (2m+ 1)4Prn(27- I), 
Am = m(m + 1) R(u*)/h, 

W =  (21+1)4(4(27- 1)[1+ln7/(-1n7*)1 

where P, is the Legendre polynomial of degree j .  The normalization (7.3) is only satis- 
fied to leading order with respect to the small parameter 1/( -In 7*). 

Retaining only the dominant terms, we have 

Thus, equation (7.6) for the pressure gradient is dominated by the Z = 0 term. The 
solution for G(t)  is 

The presence of the small parameter 1/( -In 7*) shows that there c a n  be a significant 
phase lag between the pressure gradient and the bulk velocity. 

The orthogonality of the Legendre polynomials implies that the infinite series (7.7) 
is dominated by t,he 1 = 0 and 1 = m terms: 

G(t)  A &;ii+K(u*)G(t) v( t ) / [ (v )h(  -lnr*)]. (8-4) 

In particular, for a sinusoidal bulk flow 
- u = Usinwt, 

with Y independent of time, we have 

wit,h ( -  1),(2m+ l)+p@) 
u, = I urn = amUsin(ot+8,) ,  

( -In 7*) m(m + 1 [wz + p(m)2]4 ’ 
tan 0, = - o / p ( m ) .  

If we non-dimensionalize the frequency and define the turbulent velocity scale 

IR = wh/R(u*), (u*) = RU/( -In q*), (8.8) 

then the formula for the tidally averaged dispersion coefficient can be written 
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FIGURE 7. Long-term averaged dispersion coefficient for deep water 
with averaged friction velocity (w*) = 0.04 m 5-1. 

This is the oscillatory-flow generalization of the steady-flow result derived by Elder 
(1959, equation (14)). As deduced by Bowden (1965), for low frequencies the dispersion 
coefficient is exactly half the steady-state value. 

Figure 7 shows the predicted dispersion coefficient as a function of depth h for an 
estuary with ( u * )  = 0-04 m s-l, R = 0.4, and semi-diurnal frequency 

w = 1.5 x 10-4 5-1. 

Again, there is good overall agreement with the results of Holley et al. (1970) - see 
Chatwin (1975, figure 1). The present results have the advantages of more faithful 
representations of the velocity profile and of the turbulence structure. In particular, 
the phase variations of the current with height (Chatmin 1975, equations (4.6)-(4.8)) 
are accounted for. 

9. Coriolis effect in deep estuaries 
One potentially important physical effect, which has thus far been neglected, is the 

Coriolis deflection (to the right) of the tidal current. Fortunately, its inclusion is quite 
straightforward provided that we assume the longitudinal and transverse turbulent 
diffisivities are equal. 

Instead of the single momentum equation (7.1), we now have the coupled pair of 
equations 

I 8 , ~  -fv - a,(~a,u) = G(t) ,  

with I a,v +fu - a,(ua,v) = H ( t ) ,  

u = v = O  on z = - h ,  

u a z u =  ua,v= o on z =  0. ) 

Here f is the Coriolis frequency, v the velocity across the estuary, and - H ( t )  t'he 
transverse pressure gradient. If we pose the representations 

m m 

U(%, t )  = u q t )  W)(%), v(x, t )  = v q t )  @'"(%), (9.2) 
1 - 0  I = O  
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then the equations for the coefficients u(I), d') take the form 
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In terms of G(t) and H ( t )  the solution can be written 

H(2 - 7 )  cosf7exp ( - p ( V ( t ,  7 ) )  d7, J 
with J ( ~ , T )  defined by (7.5). 

In  practice, it is not the pressure field that is externally imposed, but rather the bulk 
velocity 5(t), V(t). From (8.3) we infer that the dominant contributions arise from the 
1 = 0 mode. Hence we deduce that 

An appropriate alignment of the axes with the estuary shape enables us to set Z = 0. 
The net result is that, instead of (8.5), we now have 

-flomU(t-7)sinf7exp( -p(m)J(t,7))d7 . (9.6) 

5 = U sinot, (9.7) 

1 
Por a sinusoidal bulk flow 

with Y independent of time, we can evaluate the integrals to obtain 

( -In q*) m(m + 1) [(w +f)2 +p(m)2] [(o -f)2 

( -  l)rn+'(2m+ l)ip(m) 
urn = 

x {p(m)[o2+p(m)2+f2] sinwt-o[02+p(m)B-f2] coswt}. (9.8) 

If we non-dimensionalize the Coriolis frequency, 

then the formula for the tidally averaged dispersion coefficient becomes 
F =flu, 

(9.9) 
@(?A,) (2m+ I)m(m+ 1)[(m2(m+ 1)2+n2(1+F2))*-4n41ir2] 
2 p n = l  [n2(1+F)a+m2(m+ 1)2]2[Q2(1-F)2+m2(m+ 1)2]2 * 

( D )  = - 

Figure 7 reveals that, for sufficiently deepestuaries, the longitudinal-dispersion process 
is strongly modified by the Earth's rotation. 

I wish to  thank British Petroleum and the Royal Society for financial support. 
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